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ABSTRACT: Chaos can be explained as nonlinear systems exhibit irregular movement patterns under 

certain circumstances. In other words, the systems appear to be irregular, but actually exhibit a certain 

degree of regularity in the irregularity. Crops grow continuously with fixed growth cycles, and the 

spectral reflectance value of crops is affected by the growth conditions (e.g., moisture, nutrition, and 

disease and pest damages), soil, and differences in natural phenomena such as solar irradiation and 

atmospheric conditions. These differences can cause slight deviation and irregularity in crop spectral 

reflectance curves. However, as phenology presenting a certain regularity, is quite accord with chaos. 

The current classification methods are applicable for specific crops and at specific locations and times. 

However, these methods lack generalizability. Thus, in nonlinear systems under certain conditions, the 

feasibility of applying chaos theory to remote-sensing crop classification is worthy of exploration. 

Therefore, this research utilizes the spectral reflectance values of various crops to interpret different 

crop types by employing chaos theory. The chaotic equation and the hyperspectral data collected by the 

handheld spectra-radiometer are used to create chaotic graphs. These graphs are then applied to 

differentiate different crop types. The MATLAB software is used to develop the models. 

Three types of crop hyperspectral data sets, including garlic, scallion and sweet potato, are collected 

from the fields in Yunlin County, Taiwan. The results show that hyperspectral data sets derived from 

the crops can produce chaotic graphs using the chaotic equations. Since the spectral curves of crops are 

continues and highly sensitive to small changes, chaos theory can be applied to classify various crop 

types using hyperspectral data sets. 

 

1. INTRODUCTION 

Chaos theory is a method used in both qualitative and quantitative analysis for exploring the 

behavior of dynamic systems that can only be predicted using overall and continuous data relationships 

instead of single data relationships. Thus, chaos theory is suitable for predicting crop phenology. The 

theory has been applied in numerous domains such as natural systems, climate models, fluid 

movements, migration trends, communication systems, business management (Trygestad, 1997), 

ecology (Kauffman, 1991), and economics (Kelsey, 1988). However, no study has applied chaos theory 

to remote sensing. 



 
 

In the past, scientists investigated the chaos phenomenon in electronic circuit systems as a 

precursor to investigating chaos in real systems. The chaos phenomenon was originally calculated 

using mathematical algorithms in computers to predict climate change. Circuit systems exhibit high 

fitness to corresponding mathematical models, thereby facilitating simulating various circuit systems 

and repeating various complex nonlinear phenomena. Thus, exploring the chaos phenomenon from the 

perspective of electronic circuit systems is appropriate. Chua’s circuit has been extensively employed 

in practical operations. Because it is a typical nonlinear chaotic circuit with a simple structure that can 

be easily performed in engineering experiments, chaos phenomena can be generated within appropriate 

parameter ranges. Thus, Chua’s circuit was selected in the present study as a foundation for remote-

sensing applications.  

Because of its characteristics of a wide data coverage area, low cost, repeated observation and 

monitoring, high time efficiency, and the absence of terrain or traffic restrictions, remote-sensing 

technologies have become crucial survey tools that are gradually replacing conventional time-

consuming and laborious ground survey tools. In agricultural management, satellite remote-sensing 

images have been employed in surveying crop cultivation areas (Gallego, 2004; Pittman et al., 2010; 

Wan et al., 2010), monitoring crop growth (Doraiswamy et al., 2004; Busetto et al., 2008), predicting 

crop yield (Doraiswamy et al., 2003; Chang et al., 2005; Wang et al., 2010; Becker-Reshef et al., 2010), 

identifying spectral difference between tree species (Lawrence et al., 2006; Clark & Roberts, 2012; 

Dalponte et al., 2012; Naidoo et al., 2012), and analyzing area damage and the extent of loss from 

natural disasters (Qin et al., 2008; Becker-Reshef et al., 2010). 

Previous studies have adopted various methods and applications with specific advantages and 

applicability. However, crops grow continuously with fixed growth cycles, and the spectral reflectance 

value of crops is affected by the growth conditions (e.g., moisture, nutrition, and disease and pest 

damages), soil, and differences in natural phenomena such as solar irradiation and atmospheric 

conditions. These differences can cause slight deviation and irregularity in crop spectral reflectance 

curves. The aforementioned classification methods are applicable for specific crops and at specific 

locations and times. However, these methods lack generalizability. Thus, in nonlinear systems under 

certain conditions, the feasibility of applying chaos theory to remote-sensing crop classification is 

worthy of exploration.  

A chaotic algorithm requires entry of a series of data. Obtaining continuous data from current 

commercial satellites or aerial images is difficult because of climate conditions and budget constraints. 

However, hyperspectral ground images captured by portable devices exhibit numerous wavebands and 

narrow spectral ranges. Spectral ranges that are similar form continuous data. Spectral information in 

hyperspectral images is richer than that in ordinary multispectral images, rendering them useful for 

detecting minor spectral differences. Such differences overcome the insufficiency in multispectral 

images. Portable spectroradiometers can be used to measure the on-site reflectance curves of various 

land features at various times, locations, and statuses. Because crops change continuously and rapidly 

according to temporospatial conditions (e.g., etiolation, abscission, disease, unevenly distributed spatial 

density, and differences in planting times), a considerable number of variables are added to crop 



 
 

spectra, which is the primary cause of difficulty in classifying crops. Chaotic algorithms may be 

suitable for solving the crop classification problem and effectively identify various crop categories. 

In conventional image interpretation, scallion and garlic are easily confused, which can lead to 

misjudging the planting area and yield of both crops. Because these two crops are essential economic 

crops in Taiwan, distinguishing them is necessary. Thus, hyperspectral data of scallion and garlic 

plantations were employed to examine whether continuous spectral data combined with Chua’s circuit 

chaotic equation can distinguish scallion and garlic plantations. Chua’s circuit is composed of five 

linear elements and one nonlinear element (Cruz and Chua, 1992; Chua, 2007). When continuous 

spectral data of different crops are inputted into the model, chaos behaviors occur. Analyzing the 

resulting chaos images was expected to enable identifying various crop categories correctly, thereby 

achieving the goal of crop classification. According to the characteristics of the overall prediction 

results, which were influenced by slight deviations in the input data, chaos theory should be suitable for 

application in remote-sensing technologies for distinguishing crop categories. The research sample 

investigated in the present study comprised garlic, scallion, sweet potato, and carrots, most of which 

are planted in Yunlin County and are easy to sample. The chaotic image features of spectral reflectance 

of the various crops were captured at the same time and compared to discern any differences. 

MATLAB was used to develop the Chua’s circuit chaotic equation before conducting the chaos 

simulation.  

 

2. MATERIALS AND METHOD 

2.1 Study Area 

The sampling location was in the western region of Yunlin County, including Taixi Township and 

a part of Dongshi Township (Fig. 1). Yunlin County is a crucial crop production region of Taiwan, 

yielding the highest agricultural production among all counties in Taiwan. Because Yunlin County is 

located in a subtropical climate zone, the average annual temperature is 22.6 °C and the average annual 

precipitation is 1,028.9 mm.  

 

Figure 1. The research area 

 

 



 
 

2.2 Collection of Crop’s Hyperspectral Reflectance Data 

2.2.1 Instruments and procedures of the field work  

Crop spectral data (spectral reflectance) in the present study were obtained using PSR-1100 field 

portable spectroradiometers. The spectral range was 320–1050 nm and the spectral sampling interval 

was 1.5 nm. The actual number of measured wavebands was 512 and the angle of view was 4°. Other 

measurement instruments include a personal digital assistant (PDA), correcting whiteboard, 

thermometer and hygrometer, and tape measure. The spectroradiometer was mounted on a tripod 

during the field survey. The properties measured during the field survey included the brightness, 

luminance reflectance, spectral reflectance, and spectral distribution. 

The measurement of reflectance was completed within 2 hours at approximately noon. During 

sample collection, it was necessary to minimize the interference from manual operation factors. Thus, 

the measurers wore dark clothes to reduce the errors. When the spectroradiometer was mounted on the 

tripod, it was placed above the crops and adjusted to avoid the effect of shade from the instrument. 

Subsequently, the measurer maintained a distance from the spectroradiometer and collected spectral 

data via a Bluetooth connection between the PDA and spectroradiometer. To reduce the errors resulting 

from sudden changes in solar radiation, a whiteboard specifically for detecting reflectance was used to 

correct for solar radiation to avoid inaccurate spectral reflectance caused by sudden changes in the 

ambient light field intensity.  

 

2.2.2 Field samples collection 

From November 2013 to February 2014, the researchers captured the spectral reflectance of 

samples at the research area on nine occasions with 7–10-day intervals. The intervals differed because 

of climate factors, such as samples cannot be measured when it rained. The sample was garlic, which 

was easy to sample because it is the dominant crop in Yunlin County. The growth period of garlic is 

between October and March. Although the planting time of garlic differs annually, the primary 

objective of the present study was to determine the dates when crops can be discerned clearly. To 

prevent the garlic being planted on different dates from influencing the analysis results, the date when 

the garlic was planted in the study plantation (October 1) was used as the baseline date for the analysis. 

Scallion, sweet potato, and carrot, which are common in the study area and easily confused with garlic, 

were also added as targets. The total sample observations of scallions, garlic, sweet potatoes, and 

carrots were 27, 27, 9, and 9.    

Before spectral data were collected in the field, a whiteboard was used to simulate the 100% 

reflectance and prevent changes in the solar incident angles from influencing the results. Thus, after the 

direct energy (DE) of the plants was captured, the whiteboard correction values recommended by the 

manufacturer of the spectroradiometer were applied for waveband correction. Finally, the DE values 

were converted to reflectance values.  

 

 



 
 

2.3 Execute Chua’s circuit chaotic equation in MATLAB 

The objective of the current study was to establish a chaotic pattern that could represent the target 

crops. Spectral series was used for the analysis. In other words, the 512 wavebands of one crop at 

specific time points were substituted into the chaotic equation during each calculation. The Chua circuit 

chaotic equation developed using MATLAB was used for the simulation. The crop spectral reflectance 

values were inputted into the equation to generate chaotic patterns of each crop for interpretation. 

The chaotic equation generated chaotic patterns through moderators. The following three 

conditions must be met to generate a chaotic pattern: (1) at least one nonlinear parameter (element), (2) 

at least one resistor dissipating energy, and (3) at least three energy storage parameters (elements). 

Thus, Chua’s circuit equation comprises four linear elements: capacitances  𝐶1 and, 𝐶2; inductance L, 

resistance G = 1 / R, and the nonlinear element of Chua’s diode nonlinear resistance 𝑁𝑟. Fig. 2 shows 

Chua’s circuit equation.  

                       

Figure 2. Chua’s circuit 

 

 

Chua’s circuit equation is a first-order differential equation: 
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where 𝑉1 and 𝑉2 denote the voltages of the two ends of 𝐶1 and 𝐶2, respectively, and the current 

flowing through inductance L is 𝐼3. The voltages and current compose a 3D nonlinear element. The 3D 

trail (𝐼3(t), 𝑉2(t), 𝑉1(t)) depicts the changes in chaos status. The 2D trail (𝑉1(t), 𝑉2(t)) is called a phase 

space, in which 𝑓(𝑉1) is the voltage–current (V–I) characteristic curve describing Chua’s diode 

nonlinear resistance 𝑁𝑟 (Fig. 3). The polynomial is expressed as follows:  

𝑓(𝑉1) = 𝐺𝑏𝑉𝑡 +
1

2
(𝐺𝑎 − 𝐺𝑏) × [|𝑉1 + 𝐸| − |𝑉1 − 𝐸|].     (2) 
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𝑅   

L 𝐶2 𝐶1 𝑁𝑟 



 
 

 

Figure 3. V–I characteristic curve of the nonlinear resistance 𝑁𝑟 

The terms 𝐺𝑎 and 𝐺𝑏 in the polynomial respectively represents the characteristic internal curve slope 

and external curve slope. 𝐸 represents the breakover voltage. 

     

 

Figure 4. Chaotic pattern involving dual attractors 

The spectral data were substituted into the Chua’s circuit chaotic equation. The 2D phase space 

(𝑉1(t), 𝑉2(t)) was obtained (Fig. 4), in which the X axis represents the voltage at both ends of 𝐶1, and 

the Y axis represents the voltage at both ends of 𝐶2. A chaotic pattern with dual attractors was 

generated according to the phase space.  After the chaotic patterns were constructed, the differences 

between the patterns were analyzed. The critical values of each pattern in the 2D spaces were used in 

an inductive analysis and exploration.  

 

2.4 Spectrum series analysis  

Wavebands (320–1050 nm with an interval of 1.5 nm; 512 measurements) were simulated in a 

temporal axis. The reflectance of each waveband corrected using the whiteboard represented the 

strength of the input voltage 𝑉2, which was substituted into Chua’s circuit chaotic equation for the 

simulation. Subsequently, an analysis was conducted on the chaotic patterns with the attractors derived 

from the equation. The chaotic patterns generated the 2D phase spaces by using 𝑉1(t) and 𝑉2(t). The 

maximum and minimum values of the chaotic patterns were summarized to define the chaos range of 

each crop. The difference between the chaotic patterns was employed to distinguish the crops and 

establish a pattern database for them. The sampled crops comprised scallions, garlic, sweet potatoes, 

and carrots. Scallion and garlic samples were collected from three locations at nine time points. Thus, 

data from 27 sample observations were collected for both crops. However, because the sweet potato 



 
 

and carrot data were sampled at one location, only nine sample observations were collected for both 

crops.  

 

3. RESULTS AND DISCUSSIONS 

In the spectral series analysis, the 512 spectral reflectance values obtained for each crop were 

substituted into Chua’s circuit chaotic equation. The chaotic pattern of each crop exhibited continuous 

oscillation results of 𝑉1(t) and 𝑉2(t) for 1 ms. Figures 5 depict the 2D phase spaces of garlic. To 

facilitate an analysis, the three maximum and minimum values of the garlic reflectance generated from 

the 𝑉1(t) and 𝑉2(t) oscillation critical values were averaged, and the scallion reflectance underwent an 

identical averaging process. Because the minimum values of the crops exhibited only a slight 

difference, only the maximum values of 𝑉1(t) and 𝑉2(t) of the crops (Table 1) were used in the 

subsequent analysis. 

 

 

Figure 5. Garlic 2D phase space on December 20 (81) 

 

Table 1 Maximum values of 𝑉1(t) and 𝑉2(t) of crop chaotic patterns  

  
11/12   

(43)* 

11/26   

(57) 

12/06   

(67) 

12/20   

(81) 

12/24   

(85) 

01/07   

(99) 

01/16   

(108) 

01/28   

(120) 

02/21   

(144) 

scallion 𝑉1（t） 2.560 2.877 2.617 2.527 2.831 2.586 2.840 2.684 3.758 

  𝑉2（t） 9.001 10.900 9.388 8.791 10.666 9.160 10.680 9.759 16.240 

garlic 𝑉1（t） 3.618 2.264 3.236 2.838 3.310 4.074 3.860 3.567 3.775 

  𝑉2（t） 15.365 7.210 13.068 10.684 13.540 18.147 16.855 15.120 16.346 

sweet 

potato 
𝑉1（t） 4.119 4.108 2.953 3.255 2.983 3.731 3.387 3.211 2.042 

  𝑉2（t） 18.459 18.393 11.353 13.155 11.531 16.030 14.008 12.920 5.885 

carrot 𝑉1（t） 3.766 3.894 2.465 3.671 2.637 3.390 3.243 3.501 2.216 

  𝑉2（t） 16.235 17.055 8.444 15.709 9.440 14.080 13.179 14.679 6.926 

*Values inside the parentheses indicate the number of days for growing garlic; October 1 is the baseline. 



 
 

 

Figure 6. 𝑉1(t) Changes in maximum values of chaotic patterns of the crops in different periods. 

 

Figure 7. 𝑉2(t) Changes in maximum values of chaotic patterns of the crops in different periods. 

 

  Figures 6 and 7 depict the 𝑉1(t) and 𝑉2(t) maximum values of the crops in each period. The trends 

in the two figures are identical. According to the nine data observation time points, the garlic is clearly 

distinguishable from other three crops except on Days 43 and 120. On Days 67, 85, and 144, scallion 

was easily confused with the other crops. On Days 81 and 99, all four crops were clearly 

distinguishable. However, because the sweet potato and carrot data were collected at only one location, 

the representativeness is low. These data can serve only as a comparison reference for the present study.  

 

4. CONCLUSIONS AND SUGGESTIONS 

4.1 Conclusions 

A chaotic equation was used in a ground-based hyperspectral analysis. Spectral data of the crops 

were input into a model to generate chaotic behavior. Through nonlinear concepts, various crop models 

were established. According to previous studies, hyperspectral crop data substituted into a chaotic 

equation can generate chaotic behavior because crop spectra possess consistently high sensitivity to 

slight differences and features continuity. Thus, chaos theory can be applied to hyperspectral image-

based crop classification. 
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In spectral series analysis, the spectral reflectance characteristics of chaotic patterns of different 

crops captured at the same time were compared. Among the nine sample observation time points, 

suitable time points for discerning the crops were assessed and recommended for capturing crop 

reflectance in the future. The results revealed that on Days 81 and 99, the four crops were clearly 

distinguishable. In other words, if garlic was planted on October 1, then December 20 and the 

following January 7 would be effective time points for distinguishing garlic, scallion, sweet potato, and 

carrot by using spectral data. 

Chaos theory has been applied in studies in electrical and information engineering, medicine, 

fluid dynamics, neural network, ecology, and physical chemistry. However, to date, no study has 

applied it in the remote-sensing domain; thus, the present study is a pioneer study that can serve as a 

reference for practical agricultural management.  

 

4.2 Suggestions 

Because chaos theory was applied in remote sensing for the first time, much improvement can be 

achieved in the future. According to the problems encountered in the research process, the following 

suggestions are provided for future studies.  

First, measuring chaotic patterns is problematic. The 2D phase space of 𝑉1(t) and 𝑉2(t) was 

employed to determine the maximum values of the chaotic pattern results and explain the differences 

among the crops. The complex patterns represented by a single value over-simplified the explained 

minute changes in the chaotic patterns. Future studies can adopt fractal dimensions to measure chaotic 

patterns more accurately, thereby increasing the discriminatory power of crop spectral reflectance.  

Second, only a few crop reflectance locations were selected in this study (three for garlic and 

scallions and one for sweet potatoes and carrots). Consequently, the representativeness was too low to 

explain the differences among the crops. Therefore, future studies should acquire more location data for 

each crop to establish a reliable spectral reflectance models. In addition to discerning various known 

crops, the models should be able to interpret unknown crops.  

Finally, an analysis of the 512 collected wavebands resulted in excess data and information 

interference. Future studies should analyze the time series of each waveband to identify the specific 

wavebands that exhibit the most favorable discriminatory power. Subsequently, chaotic patterns created 

from these specific wavebands should be sufficient to establish an optimal classification model.  
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