

Key Topics

Importance of a Sustainable Bakery Industry

Using Enzymes as a Tool to Deliver on Sustainability Goals

Responsible Sourcing, Operations & Ingredients Solutions

Life Cycle Assessment of Bread

Bread is one of the most commonly discarded foods

Consumers throw away 286 million tons of cereal products

What are the causes?

Product Quality
Staleness

Consumer Behavior
Planning, Expiring
"Best Before" Dates

Supply Chain
Lack of coordination
in the supply chain

Creating a positive impact by growing our business in sustainable ingredient solutions

and maximizing our contribution to zero hunger and responsible production and consumption

Ambitions

Responsible sourcing

Create a sustainable supply chain for agricultural materials

Responsible operations

Create a zero-incident and zero-waste business

Sustainable ingredient solutions

Create solutions based on renewable resources to improve the quality of life for people today and for future generations

Section 2

HOW CAN ENZYMES BE A TOOL TO DELIVER ON OUR SUITABILITY GOALS?

Why do we use enzymes in baking?

Dough Improvement

- YeastFermentation
- Dough Absorption
- Clean Label

- Dough Strength
- ProcessTolerance
- Dough Extensibility

- Volume
- Crumb Structure
- Crust Color
- CrumbWhiteness

Freshness

- Reduce Staling
- Increase Shelf Life
- Texture

A synergistic bakery enzyme solution

Flavor/taste enhancement

Advanced ESL technology for added shelf life

Advanced flavor & taste enhancement technology

Reduced sugar Less inhibition

Optimally blended for maximum functionality
Sustainability opportunities

Baking Process

Today's Baking Process

Sugar + Standard ESL

Bread Production

Finished Bread Characteristics

Process with Enzymes ~50% Less sugar + Enzyme Solution

In Situ Sugar Production
During Baking

Improved Quality Freshness Lifecycle

Section 3

RESPONSIBLE SOURCING

Enzymes are nature's helpers – inherently sustainable

Enzymes are found in every living organism

- Natural, sustainable and biodegradable proteins essential to life
- Efficient biological catalysts that speed up chemical reactions, saving time and money
- Allow processes to take place at less severe conditions,
 saving energy
- Increase the yield and efficiency of processes, saving raw materials
- By using enzymes, the industry can do more with less

Optimize formulations

Utilize local ingredients

- Formulate with US wheat and minimize off-shore sugar transportation
- Minimizing distribution emissions

Reduction of formula ingredients

- Please consumers with label-friendly alternatives
- Cost optimization

RESPONSIBLE OPERATIONS

Increase production efficiency & plant capacity

Enzymatic function

- Aid in Yeast fermentation
- Reduce mixing time
- Soften dough and manage extensibility
- Control pan flow
- Process tolerance

Output

- Allow for longer, more efficient production runs
- Reduce product changeovers

Result

- Reduce energy consumption
- Reduce bakery emissions
- Reduce water consumption

Reduce Manufacturing Waste

Reduce equipment stress

Direct Store Distribution

Multiple production sights running at low utilization

Complex and expensive delivery

Regional delivery

Efficiency in Distribution

Optimized manufacturing footprint running at high capacity

Full truck shipments into and out of distribution

Expanded deliver reach

Section 4

SUSTAINABLE INGREDIENT SOLUTIONS

Reduce Consumption Waste

Freshness Expectations – Today and the Future

Commercial Bread

Majority of consumers (70%) expect commercial bread to remain fresh for 5-7 days after purchase

In-Store Bakery Bread

A substantial portion of consumers (36%) expect ISB bread to remain fresh for 3 days after purchase

Freshness Opportunity

- Commercial
 - 43% of consumers desire bread to last up to 14 days longer
- In-Store Bakery
 - 41% of consumers desire bread to last up to 5 days longer

Further benefits with enzymes: quality and taste

Consumers speak up: Bread with next generation enzymes ranks highest in all consumer liking categories: taste, texture, freshness & overall liking

Consumers rank quality over time

Source: Corbion Proprietary Sensory Test - November 2011

Quantifying the environmental and economic benefits of bread shelf life extension

ECO-EFFICIENCY IN THE FOOD SECTOR

Life Cycle Assessment

Enzyme usage in breads delivers environmental benefits in terms of global warming potential, cumulative energy demand and land use that have been quantified under a generic model.

Environmental & Economical Benefits:

Reduction in bread waste → Less bread produced

Bread production: Less change-overs Bread distribution: Less trips and higher loads Reduction of sugar, HFCS and yeast

Food production Bread waste 60 Total food supply loaves/year 50 430M x1000 tonnes/year 40 Standard Extended SL **Food waste** 30 Bread waste % 5.6 % 17.4 20 10 Waste reduction 36,700 tons/year 0 Standard Extended SL %

Food production

Total food supply		430M	loaves/year
Food waste	Standard	Extended SL	
Bread waste %	17.4	5.6	%
	Waste reduction	36,700	tons/year
		72	%

Carbon footprint	Standard	Extended SL	
CO ₂ emissions	355,000	293,000	tonCO ₂ eq/year
	savings	62,000	tonCO ₂ eq/year
		17	%

250 - Standard Extended SL

= 3.7 American citizens/year

= 8.5 Car trips around the world/year

Food production

Total food supply		430M	loaves/year
Food waste	Standard	Extended SL	
Bread waste %	17.4	5.6	%
	Waste reduction	36,700	tons/year
		72	%

Standard	Extended SL	
355,000	293,000	tonCO ₂ eq/year
savings	62,000	tonCO ₂ eq/year
	17	%
	355,000	355,000 293,000 savings 62,000

= 3.7 American citizens/year

= 8.5 Car trips around the world/year

Bakery performance	Standard	Extended SL		
Production	21.0M	21.6M	loaves/yr/plant	-
	increase	600,00	loaves/yr/plant	
		3	%	
Economic performance				_
Margin	increase	32	%	-

BAKINGTECH 2018
SUSTAINABILITY-SUCCESS THROUGH PEOPLE
PRODUCTS AND PRODUCTIVITY

Enzymes are a Sustainable Ingredient Solution

References

- Corbion Proprietary Sensory Test November, 2011
- Food and Agriculture Organization of the United Nations 2011
- Global food losses and food waste, SIK / FAO, 2011
- Novozymes Bagsvaerd, Denmark
- Spunk Bear, NPR, The Carbon Footprint of ... one Sandwich; https://youtu.be/jRQEi-C5GDg

Thank You!

Kathy Sargent
Market Director, Corbion
kathy.sargent@corbion.com

